
Jarrod Overson
Director of Engineering at

ANALYSIS OF AN EXPLOITED NPM PACKAGE
Event-stream's role in a supply chain attack

We think of our applications in terms of "our" code.

JS

CSS

HTML

Bundler

"Our" code "Our" app

JS

CSS

HTML

Bundler

It's easy to ignore how much third party code goes into it.

JS

CSS

HTML

Bundler

If any of that code is compromised, everything is compromised.

We usually only see the end result of attacks

We rarely get to walk through the attack from the point of origin

Who am I?
• Director at Shape Security & Google Dev Expert.

• JavaScript reverse engineer and web application breaker.
• Old-school video game hacker.
• You can follow me @jsoverson for JavaScript hacking,

attack dissection, and security topics.

How it happened

What it did

Where it leaves us

1

2

3

Agenda

JS

It started with an npm package, event-stream

JS

event-stream was maintained by Dominic Tarr

JS

Domenic gave ownership to right9ctrl in September of 2018

*

JS

right9ctrl gained trust by committing several innocent changes

!!...b550f5: upgrade dependencies
!!...37c105: add map and split examples
!!...477832: remove trailing in split example
!!...2c2095: better pretty.js example
!!...a644c5: update readme

event-stream

JS

On Sept 9 2018 right9ctrl added a new dependency and
released version 3.3.6

JS

v3.3.6

JS v0.1.0

flatmap-stream

event-stream

About that caret...

Semver pattern matching

Symbol Example Matches

^ ^0.1.0 0.*.*

~ ~0.1.0 0.1.*

JS

right9ctrl then removed flatmap-stream and updated  
event-stream to v4.0.0.

v4.0.0

event-stream

Total time between first commit and v4.0.0:

12 days

Note: Nothing malicious has happened yet.

JS

On October 5th 2018 (T+31) the attacker published
malicious version flatmap-stream@0.1.1

JS

v3.3.6

v0.1.1

flatmap-stream

event-stream

JS v0.1.0

JS

event-stream@3.3.6 installed fresh now pulls in  
flatmap-stream@0.1.1 because of the ^

JS

v3.3.6

v0.1.1

event-stream

flatmap-stream

event-stream@3.3.5 was stable for 2+ years...

JSJS v3.3.6

event-stream

A LOT depended on event-stream^3.3.5 and  
would get updated to 3.3.6 automatically.

How it happened

What it did

Where it leaves us

1

2

3

Agenda

But, first, how was it discovered?

The malicious code used a method deprecated in node v11.0.0

Node v11.0.0 was released 18 days into the exploit.

Unrelated projects started getting deprecation warnings.

On November 20, 2018 (T+77) FallingSnow put it together

So how was it discovered?
Pure luck. If crypto.createDecipher wasn't
deprecated or node v11.0.0 wasn't released, who
knows when it would have been discovered.

Time between flatmap-stream@0.1.1  
and public exposure:

48 days

Time between transfer of event-stream and  
FallingSnow's github issue:

77 days

flatmap-stream v0.1.0

flatmap-stream v0.1.1

Payload A
The bootstrap.

Recap
• The script decrypts and compiles a new module.
• The key comes from a package description (somewhere).

• The encrypted JS comes from testData[0].
• The compiled module exports testData[1].

What does this mean?
The script only serves its purpose if the code runs

1) from an npm script
2) defined in a package.json that has a specific
string in the description field.

What does this mean for us?
We need to start trolling through package.json files.

😂

The plan
• Iterate over every package's metadata.

• Decrypt testData[0] with pkg.description as the key.

• Run the decrypted data through a JS Parser because
we know it has to be JavaScript.

• If successful then 👍

Copay, the Secure Bitcoin Wallet.

Payload B
The injector.

Payload B

Payload B

npm run-script script-name

[0] [1] [2]argv:

Payload B

copay's package.json scripts

Payload B

Recap
• Payload B only continues if in Copay's build stage.
• Payload B decrypts C the same way A decrypted B.
• Payload B injects payload C into a file used in copay's

mobile app.
• Payload C is then executed in the mobile app while on a

user's mobile device.

Payload C

Payload C in a nutshell
• Stole from wallets with over 100 BTC or 1000 BCH
• Sent data to third party server: copayapi.host

How it happened

What it did

Where it leaves us

1

2

3

Agenda

This is NOT node/npm specific
Any public repository of code is susceptible.

The Good News.
The community investigated and addressed the

problem quickly.

The Bad News.
It has happened multiple times since.

This could have been much worse.
event-stream has dependents like:
- azure-cli
- dozens of build tools like gulp and its plugins
- Microsoft's monaco editor (the editor for VSCode)

2019 in review: supply chain attacks

What can you do as a dev?
• Audit your dependencies.
• Lock your dependencies.

• Cache/check in your dependencies.
• Think twice before adding dependencies.

When in doubt, don't add it.
• Dependencies are risks.
• Risks are gambles.

• Only gamble when cost is low and value is high.

What can you do as DevSecOps?
• Implement Subresource Integrity in Web Apps.
• Implement Content Security Policy headers.

• Scan your apps before release and in production
and audit any changes.

https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

THANK YOU!

@jsoverson on
bit. ly/jsoverson-youtube

